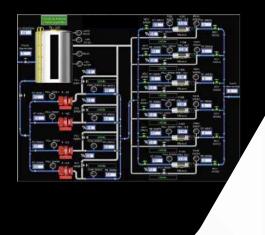


Aplicaciones petroleras

veriadores

Optimización de pozos y facilidades de producción

Todas nuestras soluciones están enfocadas a:


Variadores de frecuencia en media tensión

Aplicaciones en:

PADs de inyección y disposal, HSP (Horizontal Surface Pumps), estaciones de bombeo.

Características:

- Variadores de frecuencia (velocidad) con encerramientos tipo interior y exterior.
- Tecnología Smart Harmonics, superando la norma IEEE519. Distorsión máxima en corriente del 3% sin necesidad de accesorios adicionales.
- Tecnología PWM de tres niveles de IGBTs entregando una onda sinusoidal al motor, eliminando la necesidad de filtros de salida.
- Alto factor de potencia en todo el rango de carga del motor.
- Variador de frecuencia tipo fuente de voltaje de alto rendimiento, eficiencia del 97% o mayor.
- Disponibilidad de operación en modo "prueba" aún con motor desconectado.
- Microprocesadores de alta velocidad para rápida respuesta en todo el rango de velocidad y torque.
- Equipos diseñados con un MTBF superior a 250.000 horas.
- Configuración multi celdas fáciles de desconectar y conectar, logrando un MTTR menor a 15 minutos.

Sistema de control de bombas

Disponibilidad de diseño personalizado de facilidades de producción petroleras con pantallas y software especializado.

Ejemplo: Control centralizado de PAD con pantalla táctil para manejar sistemas de inyección de agua con bombas principales de media tensión y bombas booster.

Solución integral de clusters de producción con variadores en baja tensión

Conjunto de variadores de frecuencia para optimización de clusters de producción en aplicación de Bombeo de Cavidades Progresivas (BCP) – PCP y Bombeo Electro Sumergible (BES) - ESP, hasta seis unidades de 500HP.

Diferentes tipos de configuración con:

- Monitoreo, control y operación del sistema completo y para cada uno de los pozos.
- Gran reducción de espacio y obras civiles por integrar en un solo encerramiento las instalaciones de levantamiento artificial que corresponderían a cinco o hasta seis sistemas convencionales tipo skid.
- Diferentes pantallas para monitoreo de todas las variables a tener en cuenta dentro de un sistema de levantamiento artificial y protocolos de comunicación para conectividad con un centro maestro.

Aplicación PCP (Progressive Cavity BCP (Bombas Pumps) Cavidades Progresivas)

 Control de backspin mediante software dedicado o sistema regenerativo de frente activo.

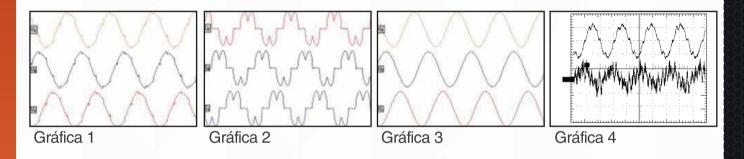
 Reinicio automático por cortes o fallas de energía.

• Función Kinetic Energy Braking (KEB), para mantener alimentado el control con la energía cinética del motor ante fallas momentáneas de energía.

Arrangue por comunicaciones y por terminales.

Protecciones por:

Límites de torque.



Aplicación BES (Bombeo Electro Sumergible) - ESP (Electrical Submersible Pumps)

- Gabinetes tipo intemperie.
- Modificación patrón V/f durante RUN.
- Diferentes métodos de control en caso de atascamiento de bomba.
- Disponibilidad de skids tipo petrolero y Step Up Transformers (SUT).
- Monitoreo constante sobre las variables del sistema, presión de cabeza y presión de fondo.
- Visualización y protecciones de variables como: presión intake, presión de descarga, temperatura motor y vibraciones.
- Variadores de frecuencia en baja y media tensión en todo el rango de potencias.

Calidad de energía

- Variadores de frecuencia en media tensión, diseñados para cumplir con lo más exigente de la norma IEEE519-1992 en mitigación de armónicos en corriente y voltaje. Forma de onda de salida tipo sinusoidal para brindar una alta vida útil al motor, cables e instalación.
- Sistemas de mitigación de armónicos para los variadores de frecuencia en baja tensión para cumplimiento de la norma IEEE519-1992 en un rango de THID≤5%.
- Filtros de salida para conversión de la onda PWM del variador a onda sinusoidal, para brindar al sistema SUT cableado motor bajo estrés y alta vida útil.
- Gráfica 1 Forma de onda en tensión antes de instalar el filtro de armónicos.
- Gráfica 2 Forma de onda en corriente antes de instalar el filtro de armónicos.
- Gráfica 3 Forma de onda en tensión después de instalar el filtro.
- Gráfica 4 Salida voltaje filtro seno / salida voltaje VDF.

Respaldo y servicio pre y post venta

- Un grupo de ingenieros y técnicos altamente capacitados para ofrecer un eficiente servicio preventa y postventa.
- Herramienta especializada para labores de comisionamiento y mantenimiento.
- Total respaldo del fabricante Yaskawa para atender detalles de instalación y atención de garantías.

